
International Journal of Theoretical Physics, Vol. 38, No. 2, 1999

Two Interpretations of the Covering Law

D. I. HertË ia1 and Al. Ivanov1

Received May 12, 1998

Two completely different physical interpretations of the covering law are
presented. One is based on an idea of Jauch and Piron, who tried to interpret
this important property of physical theories by using ideal measurements of the
first kind. The other uses the notion of degree of incompatibili ty, which arises
naturally if a physically reasonable measure of incompatibili ty of ª yes±noº
experiments is assumed to exist.

1. INTRODUCTION

In this paper physical theoriesÐ or simply theoriesÐ are orthomodular

atomic lattices, eventually complete. Any physical discussion in the frame-
work of a given theory uses the standard interpretation of its elements as

ª yes±noº experiments or as physical quantities having only two possible

values. The elements of a theory will be called tests.

In purely mathematical terms a theory is a triple (L, # , ’ ), where L is

a nonempty set, ª # º an order relation, and ª ’ º an orthocomplementation

on L. For any two elements a, b P L, by a Ù b and a Ú b are denoted the
meet and the join of a, b, respectively. If A # L, then Ù A and Ú A denote

the meet, respectively, the join of A. For any a P L we denote by a ’ its

orthocomplement. V (L) denotes the set of atoms of L.

For the smallest and the greatest elements of L we use the notations 0

and 1, respectively. If R # L 3 L is a relation, we will write aRb or (a, b)R
instead of (a, b) P R.

Let us now consider L a theory. It is well known that L may be represented

as a lattice of projectors in an appropriate Hilbert space only if L satisfies the

covering law. This means that a P L, a P V (L), and a Ù a 5 0 imply a A a
Ú a (here a A b means that b covers a or, equivalently, a is covered by b). The
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geometric interpretation of the covering law is clear, but it comes after L was

represented as an orthomodular lattice of orthogonal projectors or, equivalently,

closed subspaces cf a Hilbert space. Therefore, it is of an obvious interest to find
out if there are physical interpretations of this important property.

In this work we present two physical interpretations of the covering law.

The first comes from an idea of Jauch and Piron (1969), which was later put in

a more precise mathematical form by Ochs (1972). It uses the so-called ideal

measurements of the first kind, which are objects defined in traditional quantum

mechanics. Following the empirical definition of ideal measurements of the first
kind given by Jauch and Piron, Ochs obtained the mathematical objects describing

them in a theory. Then, by using two axioms, he proved that a theory must satisfy

the covering law. In their treatment Jauch, Piron, and Ochs used only pure states,

that is, those states that may be finally identified with the atoms of the considered

theory, so that measurements appear as mappings from the set of pure states

into itself. We change the formalism by considering as states the generalized
probabilities on theories (see Section 2), so that the ideal measurements of the

first kind in Ochs’ sense may in principle transform pure states into mixed states.

In our approach no special physical axioms are necessary for proving that a

physical theory satisfies the covering law. It can be proved that in any theory

one may construct ideal measurements of the first kind in Ochs’ sense for all
tests, some of them also having mixed states among their values. Then, if all
possible ideal measurements of a theory are supposedÐ according to the traditional

representationsÐ to transform pure states into pure states, we get that in the

considered theory the covering law holds. In Section 2 we prove that all theories

whose ideal measurements of the first kind have the properties required by

traditional quantum mechanics satisfy the covering law.
The second interpretation presented in this paper uses a completely different

physical argument. It is based on the natural assumption that there exists a measure

of incompatibility of tests. In other words, every physical theory must offer a

possibility to compare any two pairs of tests in terms of their empirical incompati-

bility (the empirical compatibility of tests is defined in Section 2). If this idea is

accepted, then it results that on any physical theory we must be able to define
a mathematical object called degree of incompatibility. This notion is introduced

in Section 3. There it is proved that any theory having a degree of incompatibility

defined on it satisfies the covering law. It is also proved that for a large class of

theories satisfying the covering law a degree of incompatibility may be constructed

in a natural way.

2. MEASUREMENTS AND THE COVERING LAW

Intuitively, any state represents a mode of preparation. In other words, a

mode of preparation is a sequence of operations whose result is, in principle, a
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well-characterized entity called a state. We accept that any test may be measured

in any state. A measurement of a test a is an experimental procedure which

permits us to decide if a gives the answer ª yesº or the answer ª noº in any
arbitrarily fixed state. Any measurement is considered to be free of subjective

errors. It is well known that any measurement of a test in a state changes that state.

This fact results easily if we take into account that the state before measurement is

a sequence of operations and the measurement itself may be thought of as a new

operation, which, ª addedº to this sequence, gives the state after measurement.

This simple observation will be used for obtaining the mathematical definition
of a measurement.

A test is said to be true in a given state if the answer ª yesº is surely obtained

when it is measured in that state. Similarly we may define a false test in any

given state. It is very important to realize that a test which is not false (true) in

a state is not necessarily true (false) in that state.

We say that a state is pure if it is completely determined by the set of all
tests which are true in that state. If this condition is not satisfied, then the state

is said to be mixed.

Two tests a and b are said to be empirically compatible if there exists a

measurement which measures both a and b in any state.

We are now completely prepared for defining the notion of an ideal measure-
ment of the first kind. First of all it is clear that, since any measurement of a

test changes the state, it may be described by a mapping from a given family of

states into another family of states. Then, according to the representations of

traditional quantum mechanics, an ideal measurement is characterized by the

following two properties:

(i) Any ideal measurement transforms pure states into pure states.

(ii) If b and a are compatible tests and b is true in a state s, then any ideal

measurement of a transforms s into a state in which b is also true.

A measurement of a is said to be of the first kind if it satisfies the following

condition:

(iii) Any state in which a is not false is transformed by the measurement

into a state in which a is true.

We give below formal definitions of states and measurements. Ideal measure-

ments of the first kind will be called simply measurements since no other kind
of measurement appears in our work.

Let L be a complete theory.

Definition 1. We say that p: L ® [0, 1] is a state on L if the following two

conditions hold:
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(1i) The restriction of p to any Boolean orthosublattice of L is a probability.

(1ii) (ai)iP I, ai P L, p (ai) 5 1 " i implies p ( Ù i ai) 5 1.

There are simple examples which prove that the property (1i) does not imply

the property (1ii). The set of all states on L will be denoted by SL. We will

suppose also that L has the following property: " a P V (L), there exists a unique
state, denoted by d a , such that d a ( a ) 5 1. The states d a will sometimes be called

Dirac states.

A set F # L is called a filter if the following conditions are fulfilled:

(f1) 0 ¸ F.

(f2) a P F, a # b Þ b P F.

(f3) ai P F, i P I Þ Ù i ai P F.

Given a state p, we define the set Ap 5 {a P L; p (a) 5 1}. The elements

of Ap correspond to the tests which are true in the state p. The set Ap is a filter
since it satisfies the conditions (f1)±(f3). It is clear that the state p is completely

determined by Ap if and only if Ap # Ap8 Þ p 5 p8. This implication will be

considered as the formal definition of a pure state. The next proposition is a

characterization of pure states.

Proposition 1. A state p is pure if and only if there exists a P V (L) such

that p 5 d a .

Proof. A filter which is maximal with respect to (f1)±(f3) is called an
ultrafilter. Let us observe first that a filter F is an ultrafilter if and only if Ù F P
V (L). Consequently, if F is an ultrafilter and Ù F 5 a , then F 5 A d a . Suppose

now that p is a pure state and F an ultrafilter with the property Ap # F. Since

F 5 A d a ( a 5 ` F ) and p is pure, we obtain p 5 d a . Conversely, let a be an

atom. Then d a is a pure state. Indeed, let p be a state such that A d a # Ap. Since

A d a is an ultrafilter, we have A d a 5 Ap, so that p ( a ) 5 1. Taking into account
that there exists only one state having the value 1 on the atom a , we obtain p 5
d a . It results that d a is a pure state and the proposition is completely proved.

The set of all pure states which, according to Proposition 1, is the set of

all Dirac states, will be denoted by PL.

It is a physically justified fact that the empirical compatibility is mathemati-

cally described by the relation C # L 3 L, which is the commutativity on L and
is defined as follows: (a, b)C Û a 5 (a Ù b) Ú (a Ù b ’ ) (Ivanov, 1991). By

using this fact we can define the measurements of L.

Definition 2. We say that the mapping M: PL 2 { d a ; a # a ’ } ® SL is a

measurement of a if the following conditions are satisfied:

(mi) d a (b) 5 1 and (b, a)C Þ (M ( d a ))(b) 5 1.

(mii) (M (d a ))(a) 5 1.
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The conditions (mi) and (mii) represent the exact translation in the language

of theories of the empirical conditions (ii) (ideal measurements) and (iii) (measure-

ments of the first kind). Indeed, we saw that p (a) 5 1 means that a is true in
the state p. On the other hand d a (a) Þ 0 for all d a in the domain of M since if

we admit d a (a) 5 0, then d a (a’ ) 5 1, which implies d a ( a Ù a ’ ) 5 1, so that

a Ù a’ . 0 and we get a # a’ , absurd.

Given a a test, the set Fa 5 {b P L; b $ a} is called the filter generated

by a (a Þ 0).

Proposition 2. M: PL 2 { d a ; a P a ’ } ® SL is a measurement for a Þ 0

if and only if F( a Ú a
’

) Ù a # AM( d a ).

Proof. We will prove first that, if a Ü a’ , then ( a Ú a ’ ) Ù a . 0. Indeed,

a Ú a’ . a ’ , otherwise a Ú a ’ 5 a ’ Þ a # a ’ , impossible. Therefore, there

exists q . 0, q # a, such that a Ú a ’ 5 q Ú a ’ . Now it results easily that ( a Ú
a’ ) Ù a 5 q . 0.

Let M: PL 2 {d a ; a # a’ } ® SL be a measurement for a . 0 and a P
V (L), a Ü a ’ . Then from the obvious properties ( a Ú a ’ , a)C and d a ( a Ú a ’ ) 5
1 we get (M ( d a ))( a Ú a ’ ) 5 1. By using (lii) we obtain (M ( d a ))(( a Ú a ’ ) Ù a)

5 1, so that F( a Ú a
’

) Ù a # AM( d a ). Conversely, suppose that this inclusion is true

for a function M: PL 2 { d a ; a # a ’ } ® SL. Then, from a $ ( a Ú a ’ ) Ù a and
(M ( d a ))(( a Ú a’ ) Ù a) 5 1, we get (M ( d a )) (a) 5 1, which proves (mii). Take

now b P L such that d a (b) 5 1 and (a, b)C. Then b $ b Ù a 5 (a’ Ú b) Ù
a $ (a’ Ú a ) Ù a, which implies (M ( d a ))(b) 5 1 and the property (mi) is proved.

By using this result we can prove the existence of measurements for any

element of an arbitrarily given theory.

Proposition 3. Let (L, # , ’ ) be a theory and a . 0. Then the following

assertions are true:

(i) There exists a measurement for a.

(ii) If ( a Ú a ’ ) Ù a ¸ V (L) for an atom a Ü a’ , then there exists a

measurement for a having mixed states among its values

Proof. (i) We define a mapping M: PL 2 {d a ; a # a ’ } ® SL as follows:

for any a Ü a’ we choose an atom b a # V (L), b a # ( a Ú a’ ) Ù a and put

M ( d a ) 5 d b a . The mapping M has obviously the property F( a Ú a
’

) Ù a # AM( d a ) and

it is sufficient to apply Proposition 2.

(ii) If ( a Ú a ’ ) Ù a ¸ V (L) for a Ü a’ , we find b 1, b 2 P V (L), b 1 ’ b 2,

b 1, b 2 # (a Ú a ’ ) Ù a. For two positive numbers c1, c2 such that c1 1 c2 5 1,
we have that p 5 c1 d b 1 1 c2 d b 2 is a mixed state. Now it is obvious that we

can construct a measurement M for a such that M ( d a ) 5 p.

The central result of this section is a direct conclusion of Proposition 3. We

saw already that, according to representations of traditional quantum mechanics,
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there are no measurements having mixed states as values, so that appropriate

theories must consider this fact.

Proposition 4. The theory L satisfies the covering law if and only if all its
measurements transform pure states into pure states.

Proof. The proof uses the following result: L satisfies the covering law if

and only if for all a P L, a P V (L), ( a Ú a ’ ) Ù a 5 0 or ( a Ú a ’ ) Ù a P
V (L) (Jauch and Piron, 1969).

Suppose that for a . 0 there exists a measurement M and an a P V (L),
M ( d a ) 5 p, where p is a mixed state. Then from Proposition 2 we find Ù Ap #
(a Ú a ’ ) Ù a. But p is a mixed state, so that Ù Ap is not an atom it results that

L does not satisfy the covering law. Suppose now that L does not satisfy the

covering law. Then there exists a . 0 and a P V (L) such that ( a Ú a ’ ) Ù a ¸
V (L). But in this case we may construct, by using Proposition 3, a measurement

having mixed states among its values.
The last proposition represents the interpretation of the covering law in

ª traditionalº terms. We mean that, once the characterization of ideal measurements

of the first kind as given in the early stage of quantum mechanics is accepted,

the covering law as a property of theories is a simple result of purely mathematical

manipulations, without any other physical ingredients.

3. COMPATIBILITY AND THE COVERING PROPERTY

In this section we give another interpretation of the covering law, which is

entirely based on a deep analysis of the compatibility and incompatibility relations.

Given L a theory and C # L 3 L the compatibility on L, the incompatibility
relation is defined naturally by the equality C 5 L 3 L 2 C. Obviously, C is

not empty if and only if L is not Boolean. If L is a Boolean/classical theory

(Ivanov, 1992), then L trivially satisfies the covering law.

Let a, b P L be such that (a, b)C. In this case, taking account of the

definition of C, we may write a . (a Ù b) Ú (a Ù b ’ ) 5 1(a, b) and b . (b Ù
a) Ú (b Ù a ’ ) 5 1(b, a). It is easy to prove that 1(a, b) is the greatest element
smaller than a which is compatible with b. Let us consider the elements m (a, b)

5 a 2 1(a, b) and m (b, a) 5 b 2 1(b, a) (HertË ia and Ivanov, 1997). Obviously

the element m (a, b) [m (b, a)] is not compatible with b(a). We can say even

more: any atom under m (a, b) is not compatible with b. Indeed, a P V (L), a
# m (a, b), ( a , b)C would imply a Ú 1(a, b) . 1(a, b) and (a Ú 1(a, b), b)C,

which is impossible because we know that 1(a, b) is the greatest element under
a which is compatible with b. This fact suggests that m(a, b) ª measuresº in a
sense the incompatibility of a with b. Similarly, we can say that m(b, a) ª measuresº
the incompatibility of b with a. Therefore, it seems that the elements m (a, b)

might be used for defining a degree of incompatibility for all pairs (a, b) P L
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3 L. In order to avoid some difficulties which will become clear later, we do

not define the degree of incompatibility on the Cartesian product L 3 L. Instead

of L 3 L the quotient set L 3 L /J, where J is an equivalence relation defined
below, will be the domain of the degree of incompatibility.

We write (a, b)J (a8, b8) if and only if m (a, b) 5 m (a8, b8). It is obvious

that J is an equivalence relation. A very important property of this relation is

that it is invariant under automorphisms of L. In order to prove this fact we

observe first that the action of an automorphism U: L ® L on L 3 L may be

defined naturally by the equality U ((a, b)) 5 (U (a), U (b)). By using this definition
we say that J is invariant under the automorphism U if (a, b)J (a8, b8) Þ (U (a),

U (b))J (U (a8), U (b8)). The proof of this implication is given by the following

simple proposition.

Proposition 5. U (m (a, b)) 5 m(U (a), U (b)).

Proof. It is sufficient to verify that U (1(a, b)) 5 1(U (a), U (b)) or, equiva-

lently, that U (1(a, b)) is the greatest element under U (a) which is compatible

with U (b). Since U is an automorphism, we can write immediately U (1(a, b))
5 U ((a Ù b) Ú (a Ù b ’ )) 5 (U (a) Ù U (b)) Ú (U (a) Ù U (b) ’ ) 5 1(U (a), U (b))

and the proposition is proved.

The invariance of the relation J under automorphisms of L is a straightforward
consequence of this simple proposition.

We are now completely prepared for defining the degree of incompatibility

[in this definition (a, b)J denotes the equivalence class of the pair (a, b) with

respect to the relation J ].

Definition 3. A function D: L 3 L /J ® [0, ` ] is said to be a degree of

incompatibility on L if it has the following two properties:

(3i) D ((a, b)J) 5 D ((a8, b8)J) if and only if there exists an automorphism
U such that U ((a, b)J) 5 (a8, b8)J.

(3ii) D ((a, b)J) 5 D ((b, a)J for all pairs (a, b).

The function D is well defined since J is invariant under automorphisms.

The property (3i) expresses the simple fact that, if the degree of incompatibility

is supposed to be a physically significant object, then it must be invariant under

automorphisms. Moreover, if two classes (a, b)J and (a8, b8)J have the same
degree of incompatibility, then each of them is obtained by applying to the other

an appropriate automorphism. The property (3ii) reflects the obvious physical

fact that the pairs (a, b) and (b, a) must be equally incompatible.

We will prove now a very important result for our purpose:

Proposition 6. U ((a, b)J) 5 (a8, b8)J Þ U (m (a, b)) 5 m (a8, b8).

Proof. We saw that a # m (a, b), a P V (L) implies (a , b)C. Consequently,

we may write m (a, b) Ù b 5 m (a, b) Ù b ’ 5 0 and we get (m (a, b), b) P (a,
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b)J , m (m (a, b), b) 5 m (a, b). On the other hand, we have (m (a, b), b) P (a,

b)J Þ U (m (a, b), b) P (a8, b8)J. By combining these facts, we get m (U (m (a,

b)), U (b)) 5 m (m (U (a), U (b)), U (b)) 5 m (a8, b8).

Corollary. Let L be a theory having the property that there exists a degree

of incompatibility defined on it. Then for any pair (a, b) P L 3 L there exists
an automorphism U of L such that U (m (a, b)) 5 m (b, a).

Proof. Let D be a degree of incompatibility on L. Since D ((a, b)J) 5 D ((b,

a)J), we may find an automorphism U such that U ((a, b)J) 5 (b, a)J and it

remains to use Proposition 6.

Remark. Now it becomes clear why we prefered to use the set L 3 L /J
instead of L 3 L. Indeed, when the hypothesis of the Corollary holds, we may

always write U ((a, b)J) 5 (b, a)J , but the equality U ((a, b)) 5 (b, a) is not

generally valid.
It is natural to expect that those theories which have degrees of incompatibil-

ity defined on them also have certain special geometric properties. We will prove

below that this is indeed so: any such theory satisfies the covering law. In order

to prove this fact, let us consider the special relation C1 # C defined as follows:

(a, b)C1 Û m (a, b) P V (L). According to the Corollary, if there exists a degree

of incompatibility on L, then we may find an automorphism U such that U (m (a,
b)) 5 m (b, a). Therefore, if m (a, b) is an atom, then m (b, a) is also an atom.

It is obvious that (a, b)C1 if and only if (a Ù b) Ú (a Ù b ’ ) A a. The existence

of a degree of incompatibility on L implies obviously the symmetry of the relation

C1. The following theorem is the central point of this section.

Theorem. The theory L satisfies the covering law if and only if the relation

C1 is symmetric.

Proof. Suppose that C1 is symmetric and consider a P V (L), a P L, such
that a Ù a 5 0. If a # a’ , then from the general properties of orthomodular

lattices we get a A a Ú a, so that we have to consider the case a Ù a ’ 5 0

only. The set A a 5 {a P L; a Ù a 5 a ’ Ù a 5 0} has obviously the property

a P A a Þ a’ P A a . We will prove now that a P A a Þ a ’ A a ’ Ú a . Indeed,

from ( a Ù a) Ú ( a Ù a ’ ) 5 0 it results that ( a , a)C1 and, since we have also

(a, a )C1, we get (a Ù a ) Ú (a Ù a ’ ) A a Þ a Ù a ’ A a Þ a’ A a ’ Ú a . But
a P A a Þ a’ P A a , so we get immediately a A a Ú a . Conversely, suppose

that L has the covering property and let us prove that C1 is symmetric. Let (a,

b) P L 3 L be a pair such that (a, b)C1 and the atom a 5 a 2 1(a, b). We will

prove first the equality

b Ú a 5 (a Ú b) Ù (a ’ Ú b) (*)

Since the atom a and the element 1(a, b) are orthogonal, we may write a #
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(a ’ Ú b ’ ) Ù (a’ Ú b), so that a # a ’ Ú b. Then, since a # a, we get a # a
Ú b and, by combining these facts, we obtain the inequality b Ú a # (a Ú b) Ù
(a ’ Ú b). In order to prove (*) it is sufficient to verify the equality (a Ú b) Ù
(a ’ Ú b) Ù (b Ú a )’ 5 0. Taking into account the relation a 5 a Ú 1(a, b), we obtain

(a Ú b) Ù (b Ú a )’

5 [b Ú (a Ù b) Ú (a Ù b ’ ) Ú a ] Ù (b Ú a ) ’

5 [(b Ú a ) Ú (a Ù b ’ )] Ù (b Ú a ) ’

5 (a Ù b ’ ) Ù (b Ú a ) ’ 5 a Ù b ’

and (*) is proved. It remains to verify that (b, a)C1 or, equivalently, (a Ù b) Ú
(a ’ Ù b) A b. We observe first that a Ù b 5 0 since a 5 m (a, b) and we saw

that all atoms under m (a, b) are not compatible with b. Since L satisfies the

covering law, the relation (*) gives b A (a Ú b) Ù (a ’ Ú b) or, equivalently,
(b ’ , a)C1. Since C1 has also the property (a, b)C1 Þ (a, b ’ )C1, we may write

(a, b)C1 Þ (a, b ’ )C1 Þ ((b ’ ) ’ , a)C1 Þ (b, a)C1 and the theorem is com-

pletely proved.

It has been seen that the definition of the degree of incompatibility has a

quite transparent physical basis. Taking account of this fact, we may affirm that
the theorem we just proved represents a physical interpretation of the covering law.

Although this interpretation of the covering law looks quite natural, it will

be complete after it will be proved that for a theory which satisfies the covering

law a degree of incompatibility can be constructed. Our discussion will be

restricted to those pairs (a, b) P L 3 L having the property that m (a, b) is a

finite element (an element of L is finite if it has an finite orthogonal decomposition
in atoms). We will construct a degree of incompatibility for a theory L which

has some special properties. In order to formulate them we need the notion of

basis of the theory L. Any orthogonal decomposition in atoms of the element

1 P L is called a basis of L. It can be proved that any orthogonal family of

atoms of L is contained in a basis.

Any one of the theories considered below has the following property: given
L such a theory, B, B8 two of its bases, and f : B ® B8 a bijective mapping, there

exists an automorphism U of L such that U (b) 5 f (b) for all b P B. This

assumption is valid if L is the lattice of all orthogonal projectors in a Hilbert

space. The well-known Piron representation theorem for complete theories assures

the validity of the above enounced property for almost all interesting theories.

In order to avoid physically irrelevant mathematical problems we will assume
also that the theories considered below have countable bases.

Let L be a theory satisfying the aforementioned properties and the covering

law. We will show that it is possible to construct in a quite natural way an

incompatibility degree on L.
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It has been seen that any equivalence class (a, b)J is characterized by the

element m (a, b) in the sense that m (a, b) is directly related to a possible measure

of incompatibility for the pairs (a8, b8) belonging to (a, b)J. Let us denote by D
the degree of incompatibility we intend to construct. Since for any compatible

pair (a, b) we have m (a, b) 5 0, it results that all compatible pairs are J-

equivalent. The J-class of all compatible pairs is obviously the relation C, so that

it is natural to put D (C ) 5 0. For the pairs (a, b) with the property m (a, b) P
V (L) we put D ((a, b)J) 5 1. It is intuitively clear that, given a degree of

incompatibility D, the inequality D ((a, b)J) , D ((a8, b8)J) means that the pair
(a, b) is ª less incompatibleº than the pair (a8, b8). Since m (a, b) was accepted

as a measure of incompatibility of the pair (a, b), it results that there does not

exist a pair of tests less incompatible than the pairs belonging to C1. Therefore

D takes no values in the open interval (0, 1). Taking into account all these facts,

it appears as natural to define the function D by the equality D ((a, b)J) 5
dim m (a,b), where dim a denotes the number of elements of an orthogonal
decomposition in atoms of the element a. If m (a, b) is not a finite element, then

we write D ((a, b)J) 5 ` . It is easy to prove that D is a degree of incompatibility.

Let us consider (a, b), (a8, b8) two pairs of tests such that D ((a, b)J) 5 D ((a8, b8)J)

and B (a, b), B (a8, b8) orthogonal decompositions in atoms of the elements m (a,

b), m (a8, b8), respectively. We may find two bases B, B8 in L such that B (a, b)
# B, B (a8, b8) # B8. It is easy to construct a bijective function f : B ® B8 with

the property f (B (a, b)) 5 B (a8, b8). Since there exists an automorphism U with

the properties U (B) 5 B8 and U (b) 5 f (b) for all b P B, we get easily U (m (a,

b)) 5 m (a8, b8). Therefore D is a degree of incompatibility if we can prove that

D ((a, b)J) 5 D ((b, a)J). But this equality results from the covering law (HertË ia

and Ivanov, 1997).

4. CONCLUSION

In this work we obtained a serious motivation for considering the covering
law to be a statement with a clear physical origin. Indeed, both interpretations

given here use notions considered fundamental in early quantum mechanics. The

first states that a theory must be able to describe ideal measurements of the first

kind as mappings transforming pure states into pure states. The second is based

on the assumption that a theory must offer the possibility to compare the incompati-

bilities of any two pairs of tests. Such a possibility appears after a careful analysis
of the incompatibility relation, which leads naturally to the notion of degree of

incompatibility. Finally, the fact that the covering law may be interpreted by

following two independent physical approaches confirms once again the physical

roots of this important property.
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